
SeaSmart.Net
™

Version 1.4.0 – Protocol Specification

Chetco Digital Instruments

Preliminary Specification 122711

Copyright © 2011 Chetco Digital Instruments, Inc.

All rights reserved.

SeaSmart.Net™ is a trademark of Chetco Digital Instruments, Inc.

SeaGauge™ is a trademark of Chetco Digital Instruments, Inc.

vGauge™ is a trademark of Chetco Digital Instruments, Inc.

WARNING!

USE THIS UNIT ONLY AS AN AID TO MONITORING ENGINE
PERFORMANCE INFORMATION.

CAUTION

When showing sensor data, this unit will only show information based on the sender used
and its installed position.

The operating and storage temperature for your unit is from -4 degrees to+167 degrees
Fahrenheit (-20 to +75 degrees Celsius). Extended storage temperatures higher or lower than
specified will cause the liquid crystal display to fail. Neither this type of failure nor its
consequences are covered by the warranty. For more information, consult the factory
customer service department.

All features and specifications subject to change without notice.

Chetco Digital Instruments may find it necessary to change or end our policies, regulations,
and special offers at any time. We reserve the right to do so without notice.

All screens in this manual are simulated.

NOTICE!

Free software upgrades will be available on our website at http:// www.chetcodigital.com as
they are released. Please check our website periodically for these and other information as
they become available.

Thank you for choosing Chetco Digital Instruments

This device complies with Part 15 of the FCC Rules. Operation is subject to the following
two conditions: (1) this device may not cause harmful interference, and (2) this device must
accept any interference received, including interference that may cause undesired operation.

Note:

This equipment has been tested and found to comply with the limits for a Class B digital
device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide
reasonable protection against harmful interference in a residential installation. This
equipment generates, uses and can radiate radio frequency energy and, if not installed and
used in accordance with the instructions, may cause harmful interference to radio
communications. However, there is no guarantee that interference will not occur in a
particular installation. If this equipment does cause harmful interference to radio or
television reception, which can be determined by turning the equipment off and on, the user
is encouraged to try to correct the interference by one or more of the following measures:

• Reorient or relocate the receiving antenna.

• Increase the separation between the equipment and receiver.

• Connect the equipment into an outlet on a circuit different from that to which the receiver
is connected.

• Consult the factory customer service department for help.

SPECIFICATIONS

 ...

NMEA 2000 Instrumentation Sentences Supported

126992 – System Time
127250 – Vessel Heading
127257 – Vessel Attitude
127251 – Rate of Turn
127488 – Engine Data - Rapid Update
127489 – Engine Data - Dynamic Update
127493 – Transmission Data - Dynamic Update
127505 – Fluid Data - Dynamic Update
127508 – Battery Status - Dynamic Update
127501 – Binary Switch Status - Dynamic Update
130306 – Wind Data
130311 – Environmental Data
130312 – Temperature Data
129025 – Position Data - Rapid
130323 – Weather Station Location Data
129026 – SOG and COG Rapid Update

Table of Contents

Table of Contents .. 5�

Introduction .. 7�

Welcome ... 7�

SeaSmart.Net Protocol .. 10�

Protocol Format .. 10�

$PCDIN,01F010 – System Time (126992) ... 11�

$PCDIN,01F112 – Vessel Heading (127250) ... 12�

$PCDIN,01F119 – Vessel Attitude (127257) ... 12�

$PCDIN,01F113 – Rate of Turn (127251) ... 13�

$PCDIN,01F200 – Engine Data - Rapid Update (127488)... 14�

$PCDIN,01F201 – Engine Data - Dynamic Update (127489) ... 14�

$PCDIN,01F205 – Transmission Data - Dynamic Update (127493) 15�

$PCDIN,01F211 – Fluid Data - Dynamic Update(127505) ... 16�

$PCDIN,01F209 – Trip Parameters - Dynamic Update(127497) 16�

$PCDIN,01F214 – Battery Status - Dynamic Update (127508) 17�

$PCDIN,01F212 – DC Status - Detail (127506) .. 17�

$PCDIN,01F219 – DC Config - Detail (127513) ... 18�

$PCDIN,01F20D – Binary Switch Status - Dynamic Update (127501) 19�

$PCDIN,01FD02 – Wind Data (130306) ... 20�

$PCDIN,01FD07 – Environmental Data (130311) .. 20�

$PCDIN,01FD08 – Temperature Data (130312) .. 21�

$PCDIN,01FD13 – Weather Station Location Data (130323) .. 22�

$PCDIN,01F802 – SOG and COG Rapid Update (129026) ... 23�

$PCDIN,01F801 –Position Data – Rapid (129025) .. 23�

Command Protocol Format .. 24�

$PCDIC – ENABLE ALL RX ... 25�

$PCDIC – USED STORED RX LIST ... 25�

$PCDIC – SAVE CURRENT RX LIST (commit to EEPROM) 25�

$PCDIC – USE CURRENT RX List .. 26�

$PCDIC – ADD RX PGN TO LIST .. 26�

$PCDIC – ADD TX PGN TO LIST .. 26�

Protocol Polling ... 27�

Protocol Parsing .. 27�

HTTP POST Protocol.. 29�

Sample .ASP script .. 30�

Embedded Server vs External Server ... 32�

Discover IP Address ... 33�

IP Discovery Program Example ... 33�

SeaSmart Scan Utility .. 35�

One Year Warranty .. 38�

VDASH SOFTWARE LICENSE AGREEMENT .. 39�

SeaSmart.Net Protocol Specification Version1.4

6

SeaSmart.Net Protocol Specification Version1.4

7

Introduction

Welcome

Thank you for purchasing a Chetco Digital Instruments product.

SeaSmart.Net™ is a hardware and software system that converts raw NMEA 2000 PGNs into a protocol
compatible with standard Web Browsers. SeaSmart.Net™ consists of a NMEA 2000 gateway, HTTP
Protocol Translator, and embedded Web Server. The Web Server stores HTML documents which render
NMEA 2000 PGNs into real-time graphical display by using the JavaScript programming language. The
embedded CGI engine dynamically creates a simple HTML document which is processed by the client
Browser.

Raw NMEA 2000 data is read directly from the Backbone and translated to SeaSmart.Net protocol so it can
be passed on and processed by Web Servers. The Web Servers then in turn format the data into HTML
friendly documents which can be retrieved by common Browser based devices. The Browsers render the
live data into graphical displays that are easily customizable via standard Web design tools.

SeaSmart.Net Protocol Specification Version1.4

8

The native NMEA 2000 PGNs are processed in real time to create a new HTML document each second.
The following is a example of typical update page.

This HTML document is then available to client Browsers to process and render in any fashion.

SeaSmart.Net Protocol Specification Version1.4

9

A typical JavaScript enabled Browser may use a combination of XMLHttpRequest and images to render as
in the following example

The purpose of this document is to describe the HTTP compatible translated NMEA 2000 Protocol so that
customized Web Pages can be created.

SeaSmart.Net Protocol Specification Version1.4

10

SeaSmart.Net Protocol

Protocol Format

The SeaSmart.Net Protocol is an 7-bit ASCII based format to retain compatibility with all types of Web
Browsers. Each received PGN instance is converted in to a sequence of comma separated fields and
terminated with the standard NMEA 0183 “*” character and two character (1 byte) checksum.

Each field is a fixed length with a variable number of fields depending on the type of data.

The Protocol header starts with a “$” symbol (0x24 HEX) followed by the letters “PCDIN” then the
specified six digit NMEA 2000 PGN number. This PGN number corresponds to the type of data to follow
as well as the number of parameters.

The following is an example for the PGN 127505 (Fluid Level)

Start PGN Time Stamp Source
ID

PGN DATA Termination Check Sum

$PCDIN 01F211 0B9CF01B 03 008061480D0000FF * 5C

The first four fields in the protocol is fixed length separated by a comma. The PGN data field is variable
length depending on the PGN type. The only variable on the overall length is the number of data fields
included in each PGN.

The following table summarizes the size for each field.

Field Size Range Type
Start 2 Bytes - ASCII Character
PGN Number 6 Bytes - ASCII Characters
Time Stamp 8 Bytes 0 - 256 ASCII Hexadecimal
Source ID 2 Bytes 0 - 256 ASCII Hexadecimal
Data Field 1-80 Bytes 0 - 65535 ASCII Hexadecimal
End 1 Bytes - ASCII Characters
Check Sum 2 Bytes - ASCII Characters

A single update interval may contain one or more PGN sentences depending on the number of newly
received NMEA 2000 PGNs. Each unique PGN Instance will have an individual sentence. Only PGNs
recognized by the NMEA 2000 Gateway will be processed with all others being ignored to reduce network
load.

SeaSmart.Net Protocol Specification Version1.4

11

$PCDIN,01F010 – System Time (126992)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 01F010
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Sequence ID 2 Bytes ASCII HEX 19 0-255
6 Reserved 2 Byte - 21 0XFF
7 Source 2 Bytes 1 22 1
 2
 3
 4
 5 Crystal Clock
 6 SeaGauge
8 Days 4 Bytes 1 23 Day Days since 1970
9 Seconds LB 4 Bytes 1 27 Seconds
10 Seconds HB 4 Bytes 1 31 Seconds Seconds * 65536
11 END 1 Bytes ASCII CHAR 35 *
12 Check Sum 2 Bytes ASCII CHAR 36 HEX XOR from $ to *
Sample $PCDIN,01F010,000C72E0,09,35F05D3B20462501*5A
Notes Total seconds = Seconds HB * 65536 + Seconds LB

SeaSmart.Net Protocol Specification Version1.4

12

$PCDIN,01F112 – Vessel Heading (127250)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 01F112
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Sequence ID 2 Bytes ASCII HEX 19 0-255 -
6 Heading 4 Bytes .0001 21 radians Degrees = X * 57.29 *

.0001
7 Deviation 4 Bytes .0001 25 radians Degrees = X * 57.29 *

.0001
8 Variation 4 Bytes .0001 29 radians Degrees = X * 57.29 *

.0001
9 Reference 1 Bytes 33 1
 2 Apparent
 3 -
 4 Ref to Water
10 Reserved 1 Bytes 34 0XFF
8 END 2 Bytes ASCII CHAR 35 *
9 Check Sum 1 Bytes ASCII CHAR 36 HEX XOR from $ to *
Sample $PCDIN,01F112,000C72EA,09,28C36A0000B40AFD*56
Notes

$PCDIN,01F119 – Vessel Attitude (127257)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 01F119
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Sequence ID 2 Bytes ASCII HEX 19 0-255 -
6 Yaw 4 Bytes .0001 21 radians Degrees = X * 57.29 *

.0001
7 Pitch 4 Bytes .0001 25 radians Degrees = X * 57.29 *

.0001
8 Roll 4 Bytes .0001 29 radians Degrees = X * 57.29 *

.0001
9 Reserved 2 Bytes ASCII CHAR 33 0XFF
10 END 1 Bytes ASCII CHAR 35 *
11 Check Sum 1 Bytes ASCII CHAR 36 HEX XOR from $ to *
Sample $PCDIN,01F119,000C76CA,09,3DFF7F86FFBF00FF*5B
Notes

SeaSmart.Net Protocol Specification Version1.4

13

$PCDIN,01F113 – Rate of Turn (127251)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 01F113
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Sequence ID 2 Bytes ASCII HEX 19 0-255 -
6 Rate LB 4 Bytes .0001 21 radians Degrees = X * 57.29 *

.0001
7 Rate HB 4 Bytes .0001 * 65536 25 radians Degrees = X * 57.29 *

.0001
8 Reserved 6 Bytes ASCII CHAR 29 0XFFFFFF
9 END 1 Bytes ASCII CHAR 35 *
10 Check Sum 2 Bytes ASCII CHAR 36 HEX XOR from $ to *
Sample $PCDIN,01F113,000C76CA,09,626CA90100FFFFFF*55
Notes Total ROT = ROT HB * 65536 + ROT LB

SeaSmart.Net Protocol Specification Version1.4

14

$PCDIN,01F200 – Engine Data - Rapid Update (127488)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 01F200
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Instance ID 2 Bytes ASCII HEX 19 0-255 -
6 RPM 4 Bytes .25 21 Rev/sec
7 BOOST 4 Bytes .01 25 Pascal’s
8 TRIM 2 Bytes .01 29 Percent
9 Reserved 4 Bytes ASCII CHAR 31 0XFFFF FF
10 END 1 Bytes ASCII CHAR 35 *
11 Check Sum 2Bytes ASCII CHAR 36 HEX XOR from $ to *
Sample $PCDIN,01F200,000C7A4F,02,000000FFFF7FFFFF*21
Notes

$PCDIN,01F201 – Engine Data - Dynamic Update (127489)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 127489
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Instance ID 2 Bytes ASCII HEX 19 0-255 -
6 OIL

Pressure
4 Bytes .01 21 Pascal’s

7 OIL Temp 4 Bytes .10 25 Kelvin
8 Engine

Temp
4 Bytes .01 29 Kelvin

9 Alternator
Volts

4 Bytes .01 33 Volts

10 Fuel Rate 4 Bytes .10 37 L/Hr
11 Engine

Hours LB
4 Bytes .01 41 Seconds

12 Engine
Hours HB

4 Bytes .01 45 Seconds

13 Coolant
Pressure

4 Bytes .10 49 Pascal’s

14 Fuel
Pressure

4 Bytes .01 53 Pascal’s

15 Reserved 2 Bytes 57 0XFF
16 Status 1 2 Bytes 59
17 Status 2 2 Bytes 63
18 Load 2 Bytes 1% 67 Percent
19 Torque 2 Bytes 1% 69 Percent
20 END 1 Bytes ASCII CHAR 71 *
21 Check Sum 1 Bytes ASCII CHAR 72 HEX XOR from $ to *
Sample $PCDIN,01F201,000C7E1B,02,000000FFFF407F0005000000000000FFFF000000000000007F7F*24
Notes Total Engine Hours = Engine Hours HB * 65536 + Engine Hours LB

SeaSmart.Net Protocol Specification Version1.4

15

$PCDIN,01F205 – Transmission Data - Dynamic Update (127493)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 01F205
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Instance ID 2 Bytes ASCII HEX 19 0-255
6 Gear 1 Byte 21
7 Reserved 1 Byte 22
8 Tran Pressure 4 Bytes .01 23 Pascal’s
9 Tran Temp 4 Bytes .01 27 Kelvin
10 Tran Status 4 Bytes 31
11 Reserved 2 Bytes 33 0XFF
12 END 1 Bytes ASCII CHAR 35 *
13 Check Sum 1 Bytes ASCII CHAR 36 HEX XOR from $ to *
Sample $PCDIN,01F205,000C7E33,02,007F0000000C0000*21
Notes

SeaSmart.Net Protocol Specification Version1.4

16

$PCDIN,01F211 – Fluid Data - Dynamic Update(127505)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 01F211
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Instance ID 1 Bytes ASCII HEX 19 0-255
6 Fluid Type 1 Bytes - 20 0 - 15 Type of Fluid Tank
7 Level 4 Bytes .01 21 Percent
8 Capacity LB 4 Bytes .10 25 Liters
9 Capacity HB 4 Bytes .10 * 65536 29 Liters
10 Reserved 2 Bytes 33 0XFF
11 END 1 Bytes ASCII CHAR 35 *
12 Check Sum 1 Bytes ASCII CHAR 36 HEX XOR from $ to *
Sample $PCDIN,127505,04,00,0001,9500,0000,0000*7E
Notes Total Capacity = Capacity HB * 65536 + Capacity LB

$PCDIN,01F209 – Trip Parameters - Dynamic Update(127497)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 01F211
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Instance ID 2 Bytes ASCII HEX 19 0-255
6 Fuel Used 4 Bytes .001 21 Cubic Meters
7 Fuel Rate Avg 4 Bytes .0001 25 Cubic Meters
8 Fuel Rate Ecno 4 Bytes .0001 29 Cubic Meters
9 Instantaneous 4 Bytes .0001 31 Cubic Meters
11 END 1 Bytes ASCII CHAR 35 *
12 Check Sum 1 Bytes ASCII CHAR 36 HEX XOR from $ to *
Sample $PCDIN,01F209,0B9CF166,10,03C19800003B053B05*22

Notes Total Capacity = Capacity HB * 65536 + Capacity LB

SeaSmart.Net Protocol Specification Version1.4

17

$PCDIN,01F214 – Battery Status - Dynamic Update (127508)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 01F214
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Instance ID 2 Bytes ASCII HEX 19 0-255
6 Battery Volts 4 Bytes .01 21 Volts
7 Battery

Current
4 Bytes .01 25 AMPS

8 Battery Temp 4 Bytes .01 29 Kelvin
9 Sequence ID 2 Bytes 33 0-255
10 END 1 Bytes ASCII CHAR 35 *
11 Check Sum 1 Bytes ASCII CHAR 36 HEX XOR from $ to *
Sample $PCDIN,01F214,000C7E2C,02,01B0040000FFFF36*20
Notes

$PCDIN,01F212 – DC Status - Detail (127506)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 01F214
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Sequence ID 2 Bytes ASCII HEX 19 0-255
5 Instance ID 2 Bytes ASCII HEX 21 0-255
 Battery Type 2 Bytes 1 23 0-255 0 = Battery
 1 = Alternator
 2 = Converter
 3 = Solar
 4 = Wind
6 State Of

Charge
2 Bytes 1 25 Percent

7 State of
Health

2 Bytes 1 27 Percent

8 Time Remain 4 Bytes 1 29 Minutes
9 Ripple Volts 2 Bytes 1 mV 33 0-255
10 END 1 Bytes ASCII CHAR 35 *
11 Check Sum 2 Bytes ASCII CHAR 36 HEX XOR from $ to *
Sample $PCDIN,01F212,0DBBEA42,00,30F00F00004088FF*57
Notes

SeaSmart.Net Protocol Specification Version1.4

18

$PCDIN,01F219 – DC Config - Detail (127513)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 01F214
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Instance ID 1 Bytes ASCII HEX 19 0-255
 Battery Type 1 Bytes 1 20 0-255 0 = Flooded
 1 = Gel
 2 = AGM

6 Equalization 1 Bytes 1 21 Yes/No 0
7 Reserved 1 Bytes 1 22 0XF
8 Nom Volts 1 Bytes 1 23 Index 0 = 6 Volts
 1 = 12 Volts
 2 = 24 Volts
 3 = 32 Volts
 4 = 36 Volts
 5 = 42 Volts
 6 = 48 Volts
9 Chemistry 1 Bytes 1 24 Index 0 = Lead
 1 = Lion
 2 = NiCad
 3 = ZnO
 4 = NiMH
 Capacity 4 Bytes 1 25 1 Amp Hour
 Temp Coeff 2 Bytes 1 29 1%/C
 Peukert 2 Bytes 0.002 31
 Charge Factor 2 Bytes 1 33 Percent
10 END 1 Bytes ASCII CHAR 35 *
11 Check Sum 2 Bytes ASCII CHAR 36 HEX XOR from $ to *
Sample $PCDIN,01F219,0D98AF03,00,00F00F00004088FF*58
Notes

SeaSmart.Net Protocol Specification Version1.4

19

$PCDIN,01F20D – Binary Switch Status - Dynamic Update (127501)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 01F20D
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Instance ID 2 Bytes ASCII HEX 19 0-255
6 Switch Status LB 0 4 Bytes ON, OFF 21 Switch 0-7 00 = OFF, 01 = ON
7 Switch Status LB 1 4 Bytes ON, OFF 25 Switch 8-15 10 = UNDEF, 11 = ERR
8 Switch Status LB 2 4 Bytes ON, OFF 29 Switch 16-24
9 Switch Status LB 3 4 Bytes ON, OFF 33 Switch 24-29
10 END 1 Bytes ASCII CHAR 35 *
11 Check Sum 2 Bytes ASCII CHAR 36 HEX XOR from $ to *
Sample $PCDIN,01FD02,000C8377,09,03C3007F0AFAFFFF*54
Notes

SeaSmart.Net Protocol Specification Version1.4

20

$PCDIN,01FD02 – Wind Data (130306)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 01FD02
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Sequence ID 2 Bytes 19 0-255
6 Speed 4 Bytes .01 21 m/sec Knots = X * 1.9438 * .01
7 Direction 4 Bytes .0001 25 radians Degrees = X * 57.29 *

.0001
8 Reference 2 Bytes 29 1 -
 2 Apparent
 3 -
 4 Ref to Water
9 Reserved 4 Bytes 31 0XFFFF
10 END 1 Bytes ASCII CHAR 35 *
11 Check Sum 2 Bytes ASCII CHAR 36 HEX XOR from $ to *
Sample $PCDIN,01FD02,000C8472,09,04C300487FF8FFFF*55
Notes

$PCDIN,01FD07 – Environmental Data (130311)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 01FD07
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Sequence ID 2 Bytes 19 0-255
6 Instance ID 2 Bytes 21 0-255 Lower Byte
7 Air Temp 4 Bytes .01 23 Kelvin
8 Humidity 4 Bytes .01 27 %
9 Barometric 4 Bytes .01 31 inHg
10 END 1 Bytes ASCII CHAR 35 *
11 Check Sum 2 Bytes ASCII CHAR 36 HEX XOR from $ to *
Sample $PCDIN,01FD07,000C8473,09,80C17D73FF7FF703*28
Notes

SeaSmart.Net Protocol Specification Version1.4

21

$PCDIN,01FD08 – Temperature Data (130312)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 01FD08
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Sequence ID 2 Bytes 19 0-255
6 Instance ID 2 Bytes 21 0-255
7 Temp Type 2 Bytes 23 0-255 0x80-8x8F – CDI type
8 Temp 4 Bytes .01 25 Kelvin
9 Set Temp 4 Bytes .01 29 Kelvin
10 Reserved 2 Bytes 33 0XFF
11 END 1 Bytes ASCII CHAR 35 *
12 Check Sum 2 Bytes ASCII CHAR 36 HEX XOR from $ to *
Sample $PCDIN,01FD08,000C85DD,02,3800821C7DF401FF*54
Notes

SeaSmart.Net Protocol Specification Version1.4

22

$PCDIN,01FD13 – Weather Station Location Data (130323)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 01FD13
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Mode 1 Byte 19
6 Reserved 1 Byte 20
7 Days 4 Bytes 1 25 Day Days since 1970
8 Seconds LB 4 Bytes 1 27 Seconds
9 Seconds HB 4 Bytes 1 31 Seconds Seconds * 65536
10 Latitude LB 4 Bytes .0000001 33 degrees
11 Latitude HB 4 Bytes .0000001 37 degrees
12 Longitude LB 4 Bytes .0000001 41 degrees
13 Longitude HB 4 Bytes .0000001 45 degrees
14 Speed 4 Bytes .01 49 m/sec Knots = X * 1.9438 * .01
15 Direction 4 Bytes .0001 53 radians Degrees = X * 57.29 *

.0001
16 Reference 2 Bytes 57 1 -
 2 Apparent
 3 -
 4 Ref to Water
17 Reserved 2 Bytes 59 0XFF
18 Wind Gusts 4 Bytes 61
19 Barometric 4 Bytes .01 65 inHg
20 Air Temp 4 Bytes .01 69 Kelvin
21 Station ID 4 Bytes 73
22 Station Name 4 Bytes 75
23 END 1 Bytes ASCII CHAR 79 *
24 Check Sum 2 Bytes ASCII CHAR 80 HEX XOR from $ to *
Sample $PCDIN,01FD13,000C858B,09,F05D3B700926013A611019CB29EEB5C300F90AFAFFFFF7037D7302010201*5C

Notes Degrees = (X HB * 65536 + X LB) * .0000001

SeaSmart.Net Protocol Specification Version1.4

23

$PCDIN,01F802 – SOG and COG Rapid Update (129026)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 01F802
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Sequence ID 2 Bytes 19 0-255
6 Reference 1 Byte 21 1 -
 2 Apparent
 3 -
 4 Ref to Water
7 Reserved 1 Byte 22 F
8 Speed 4 Bytes .01 27 m/sec Knots = X * 1.9438 * .01
9 Direction 4 Bytes .0001 23 radians Degrees = X * 57.29 *

.0001
10 Speed 4 Bytes .01 27 m/sec Knots = X * 1.9438 * .01
11 Reserved 4 Bytes 31 0XFFFF
12 END 1 Bytes ASCII CHAR 35 *
13 Check Sum 2 Bytes ASCII CHAR 36 HEX XOR from $ to *
Sample $PCDIN,01F802,000C8286,09,3AFC8CCA0500FFFF*58
Notes

$PCDIN,01F801 –Position Data – Rapid (129025)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIN
2 PGN ID 6 Bytes ASCII CHAR 0 01F801
3 Time Stamp 6 Bytes ASCII HEX 7 3
4 Source ID 2 Bytes ASCII HEX 16 0-255
5 Latitude LB 4 Bytes .0000001 19 degrees
6 Latitude HB 4 Bytes .0000001 23 degrees
7 Longitude LB 4 Bytes .0000001 27 degrees
8 Longitude HB 4 Bytes .0000001 31 degrees
9 END 1 Bytes ASCII CHAR 35 *
10 Check Sum 2 Bytes ASCII CHAR 36 HEX XOR from $ to *
Sample $PCDIN,129025,04,00,A2C9,190A,2C81,B603*7A
Notes Degrees = (X HB * 65536 + X LB) * .0000001

SeaSmart.Net Protocol Specification Version1.4

24

Command Protocol Format

The SeaSmart.Net Command Protocol is an 7-bit ASCII based format and is used to configure the
SeaSmart.net adapter. Each Command contains a sequence of comma separated fields and terminated with
the standard NMEA 0183 “*” character and two character (1 byte) checksum.

Commands can issued over TCP/UDP, Web GET, and serial port interfaces

The Protocol header starts with a “$” symbol (0x24 HEX) followed by the letters “PCDIC” then the
specified six digit NMEA 2000 PGN number equal to 0xFFFFFF, Time Stamp, Source ID (equal to 0xFF)
and COMMAND Hexadecimal String.

The following is an example for command “ENABLE ALL RX”

Start PGN Time Stamp Source
ID

COMMAND DATA Termination Check Sum

$PCDIC FFFFFF 0B9CF01B FF 110200 * 5C

The first four fields in the protocol is fixed length separated by a comma. The Command data field is
variable length depending on the command type. The only variable on the overall length is the number of
data fields included in each command.

The following table summarizes the size for each field.

Field Size Range Type
Start 6 Bytes $PCDIC ASCII Character
PGN Number 6 Bytes 0xFFFFFF ASCII Characters
Time Stamp 8 Bytes 0 - 256 ASCII Hexadecimal
Source ID 2 Bytes 0xFF ASCII Hexadecimal
Command Data Field 1-80 Bytes 0 - 65535 ASCII Hexadecimal
End 1 Bytes - ASCII Characters
Check Sum 2 Bytes - ASCII Characters

Some Command Actions may require more than one command string. For example, updating a RX PGN
List element requires sending the specified PGN Enable followed by the Enable List Command to become
active.

SeaSmart.Net Protocol Specification Version1.4

25

$PCDIC – ENABLE ALL RX

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIC
2 PGN ID 6 Bytes ASCII CHAR 7 0xFFFFFF
3 Time Stamp 6 Bytes ASCII HEX 14 3
4 Source ID 2 Bytes ASCII HEX 16 0xFF
5 Command ID 2 Bytes ASCII HEX 19 0x11 -
6 Enable 2 Bytes ASCII HEX 21 0x02 02=enable, 01=disable
7 Reserved 2 Bytes ASCII CHAR 23 0X00
8 END 1 Bytes ASCII CHAR 25 *
9 Check Sum 1 Bytes ASCII CHAR 26 HEX XOR from $ to *
Sample $PCDIC,FFFFFF,000C76CA,FF,110200*5B
Notes Single Command

$PCDIC – USED STORED RX LIST

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIC
2 PGN ID 6 Bytes ASCII CHAR 7 0xFFFFFF
3 Time Stamp 6 Bytes ASCII HEX 14 3
4 Source ID 2 Bytes ASCII HEX 16 0xFF
5 Command ID 2 Bytes ASCII HEX 19 0x11 -
6 Enable 2 Bytes ASCII HEX 21 0x01 02=enable, 01=disable
7 Reserved 2 Bytes ASCII CHAR 23 0X00
8 END 1 Bytes ASCII CHAR 25 *
9 Check Sum 1 Bytes ASCII CHAR 26 HEX XOR from $ to *
Sample $PCDIC,FFFFFF,000C76CA,FF,110100*5B
Notes Single Command

$PCDIC – SAVE CURRENT RX LIST (commit to EEPROM)

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIC
2 PGN ID 6 Bytes ASCII CHAR 7 0xFFFFFF
3 Time Stamp 6 Bytes ASCII HEX 14 3
4 Source ID 2 Bytes ASCII HEX 16 0xFF
5 Command ID 2 Bytes ASCII HEX 19 0x01 -
9 END 1 Bytes ASCII CHAR 21 *
7 Check Sum 1 Bytes ASCII CHAR 23 HEX XOR from $ to *
Sample $PCDIC,FFFFFF,000C76CA,FF,01*5B
Notes Single Command – paired with Enable RX or TX PGN

SeaSmart.Net Protocol Specification Version1.4

26

$PCDIC – USE CURRENT RX List

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIC
2 PGN ID 6 Bytes ASCII CHAR 7 0xFFFFFF
3 Time Stamp 6 Bytes ASCII HEX 14 3
4 Source ID 2 Bytes ASCII HEX 16 0xFF
5 Command ID 2 Bytes ASCII HEX 19 0x4B -
9 END 1 Bytes ASCII CHAR 21 *
10 Check Sum 1 Bytes ASCII CHAR 23 HEX XOR from $ to *
Sample $PCDIC,FFFFFF,000C76CA,FF,4B*5B
Notes Single Command – Used with Enable RX or TX PGN

$PCDIC – ADD RX PGN TO LIST

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIC
2 PGN ID 6 Bytes ASCII CHAR 7 0xFFFFFF
3 Time Stamp 6 Bytes ASCII HEX 14 3
4 Source ID 2 Bytes ASCII HEX 16 0xFF
5 Command ID 2 Bytes ASCII HEX 19 0x46 -
6 PGN 6 Bytes ASCII HEX 21 0x000000 PGN Number in Hex
7 Enable 4 Bytes ASCII HEX 27 0x0001 0x0001 = enable
8 Mask 8 Bytes ASCII HEX 31 0x00FFFF03 Default = match all
9 END 1 Bytes ASCII CHAR 39 *
10 Check Sum 1 Bytes ASCII CHAR 40 HEX XOR from $ to *
Sample $PCDIC,FFFFFF,00A55979,00,4612F101000100FFFF03*22
Notes Dual Command – must follow with USE CURRENT RX LIST command to activate

$PCDIC – ADD TX PGN TO LIST

Field Name Length Resolution Offset Value Comment
1 Start 6 Bytes ASCII CHAR 0 $PCDIC
2 PGN ID 6 Bytes ASCII CHAR 7 0xFFFFFF
3 Time Stamp 6 Bytes ASCII HEX 14 3
4 Source ID 2 Bytes ASCII HEX 16 0xFF
5 Command ID 2 Bytes ASCII HEX 19 0x47 -
6 PGN 6 Bytes ASCII HEX 21 0x000000 PGN Number in Hex
7 Enable 4 Bytes ASCII HEX 27 0x0001 0x0001 = enable
8 Rate 8 Bytes ASCII HEX 31 0x32000000 Rate (X 100 mSec)
8 Interval 8 Bytes ASCII HEX 31 0x32000000 Interval (X 100 mSec)
9 END 1 Bytes ASCII CHAR 39 *
10 Check Sum 1 Bytes ASCII CHAR 40 HEX XOR from $ to *
Sample $PCDIC,FFFFFF,00A55979,00,4712F10100013200000032000000*22
Notes Dual Command – must follow with USE CURRENT RX LIST command to activate

SeaSmart.Net Protocol Specification Version1.4

27

Protocol Polling

The SeaSmart.Net Protocol is embedded in a simple HTML document created dynamically from a Browser
GET request. One simple method is to use the XMLHttpRequest Object to issue a GET of the target
HTML file from the server.

var datafile = window.location.href.substring(0,
 window.location.href.lastIndexOf("/") + 1) +
 "NMEAN2KData.htm?";

objXml = new XMLHttpRequest();

objXml.open("GET",datafile , true);

This will create a new Xml Object and copy the contents of the NMEAN2KData.htm file located in the
same directory as the calling Web Page.

Use the objXml.onreadystatechange event to determine when the new data is ready.

objXml .onreadystatechange = function()
{

if(objXml.readyState == 4)
 {
 if(objXml.status == 200)
 {
 mydata= objXml .responseText;
 }
 }
}

The mydata object will now contain a copy of the NMEAN2KData.htm file

Protocol Parsing

The SeaSmart.Net Protocol is easily parsed in JavaScript by using the Java .split function

 mydata= objXml .responseText;

 mySubStrings = mydata.split("$PCDIN");

This will create a variable number of array elements based on the starting “$PCDIN” character that
correspond to each of the received PGN sentences.

From there, each PGN can be decoded by fixed reference to character position in the string.

SeaSmart.Net Protocol Specification Version1.4

28

Start by extracting the PGN number to determine the number and types of data fields.

for(myIndex = 0; myIndex < myArrayLength; myIndex++)
{

// First extract the six character PGN number

myHexStr = mySubStrings[myIndex];
 myHexStr = myHexStr.substr(0,6) ;
 myPGN = parseInt(myHexStr);

// Then Parse based on PGN Number
 if(myPGN == 130311) // Environ Data
 {
 myDataLabels[myIndex]="BARO";
 myHexStr = mySubStrings[myIndex];
 myHexStr = myHexStr.substr(18,4) ;
 myHexStr = "0x" + myHexStr;
 myPGNValue = parseInt(myHexStr);
 myHexStr =((myPGNValue * 0.0295229));

 myDataValues[myIndex]=myHexStr.toFixed(2) ;
 myDialIndexes[myIndex]=Math.floor(((myPGNValue*0.0295229) -28)*64);

 myDataLabels[myIndex]="AIR TEMP";
 myHexStr = mySubStrings[myIndex];
 myHexStr = myHexStr.substr(13,4) ;
 myHexStr = "0x" + myHexStr;
 myPGNValue = parseInt(myHexStr);
 myDataValues[myIndex]=Math.floor(((myPGNValue * 0.018) - 459));

 myDialIndexes[myIndex] =Math.floor(((myPGNValue * 0.018) - 459)*2);

 }

}

Refer to the SeaSmart.Net Protocol descriptions for definitions on each of the received PGN data
structures

The resulting data variables can be easily written to the target Browser Window using a variety of methods.
The document Object is one option

document.getElementById("dataLabel7").innerHTML = myDataLabels[myIndex];
document.getElementById("dialValue7").innerHTML = myDataValues[myIndex];

SeaSmart.Net Protocol Specification Version1.4

29

HTTP POST Protocol

SeaSmart.Net can support forwarding data to external Web Servers on the Local or Global network by
using the HTTP POST Protocol. When this option is enabled, a TCP connection is made to the target IP
address (or Host Name if DNS is available) and incoming NMEA 2000 data transferred in blocks using the
HTTP POST once a second. The TCP connection is maintained as long as new data is available within the
interval.

The SeaSmart.Net module is configured with the HOST IP Address or HOST NAME and the target file to
handle the POST which is usually an Active Server Script (ASP) or CGI Script depending on the Server
Platform type.

A typical POST message may look like:

POST /XPORTN2KWrite.asp HTTP/1.1
Host: 192.168.0.1:80
Content-Length: 361
Content-type: application/x-www-form-urlencoded

Name=
$PCDIN,01F211,0B9CF01B,03,008061480D0000FF*5C
$PCDIN,01F214,0B9CF028,03,0100000000FFFF8C*2D
$PCDIN,01FD08,0B9CF02D,03,8D028700FFF401FF*52
$PCDIN,01F113,0B9CF035,23,2FF582FDFFFFFFFF*52
$PCDIN,01F112,0B9CF035,23,BD792A0000D8F5FD*2A
$PCDIN,01F205,0B9CF03A,03,007F0000A0090000*26
$PCDIN,01F200,0B9CF040,03,000000FFFF7FFFFF*2D
$PCDIN,01F113,0B9CF096,23,30F582FDFFFFFFFF*2C
$PCDIN,01F112,0B9CF096,23,BE792A0000D8F5FD*22

Where XPORTN2KWrite.asp is the handler and 192.168.0.1:80 is the host IP address/Port.

The number of PGNs transferred in each POST is dependent on the number received within the one
second interval. The hosting server is then responsible for processing the data and passing it along. In most
cases, the .ASP script will just write it to a local .htm file so that Browser Apps can access it.

The resulting HTML file would be.

<html>
<body>
$PCDIN,01F211,0B9CF01B,03,008061480D0000FF*5C

$PCDIN,01F214,0B9CF028,03,0100000000FFFF8C*2D

$PCDIN,01FD08,0B9CF02D,03,8D028700FFF401FF*52

$PCDIN,01F113,0B9CF035,23,2FF582FDFFFFFFFF*52

$PCDIN,01F112,0B9CF035,23,BD792A0000D8F5FD*2A

$PCDIN,01F205,0B9CF03A,03,007F0000A0090000*26

$PCDIN,01F200,0B9CF040,03,000000FFFF7FFFFF*2D

$PCDIN,01F113,0B9CF096,23,30F582FDFFFFFFFF*2C

$PCDIN,01F112,0B9CF096,23,BE792A0000D8F5FD*22

 </body>
</html>

SeaSmart.Net Protocol Specification Version1.4

30

Sample .ASP script

The following sample .ASP file simply takes the incoming post data and writes out to existing file while
replacing the “*” with “
” to be compatible with HTML syntax.

<html>

<head>
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<title>Main</title>

<meta name="Microsoft Border" content="none">
</head>

<body>

<%
Dim name, oldN2KData
' Declare our vaiables
Dim objFSO, objCountFile ' object vars for FSO and File
Dim strCountFileName ' filename of count text file
Dim iCount ' count variable

Dim objOldFSO, objOldDataFile ' object vars for FSO and File
Dim strOldDataFileName ' filename of count text file
Dim iOldDataCount ' count variable

Dim myHTTPHeader
Dim myHTTPFooter

myHTTPHeader = "<HTML><head><Title> SeaGauge Web Log File </Title></head><Body>"
myHTTPFooter = "</Body></HTML>"

name = Request.Form("Name")

' Old N2K data File Name
strOldDataFileName = Server.MapPath("OldNMEAN2KData.txt")

' Create FileSystemObject to deal with file access
Set objOldFSO = Server.CreateObject("Scripting.FileSystemObject")

' Open Old file and get a text stream to new one
Set objOldDataFile = objOldFSO.OpenTextFile(strOldDataFileName, 1)

 ' Read from the file.
 If objOldDataFile.AtEndOfStream Then
 oldN2KData = ""
 Else
 oldN2KData = objOldDataFile.ReadAll
 End If

objOldDataFile.Close

SeaSmart.Net Protocol Specification Version1.4

31

' file's filename
strCountFileName = Server.MapPath("NMEAN2KData.htm")

' Create FileSystemObject to deal with file access
Set objFSO = Server.CreateObject("Scripting.FileSystemObject")

' Overwrite existing file and get a text stream to new one
Set objCountFile = objFSO.CreateTextFile(strCountFileName, True)

' Write updated count
objCountFile.Write myHTTPHeader

oldN2KData = Replace(oldN2KData,"*","
")

' Write Old Data
objCountFile.WriteLine oldN2KData

oldN2KData = Replace(name,"*","
")
' Write new data
objCountFile.WriteLine oldN2KData

' Write updated count
objCountFile.Write myHTTPFooter

' Close the file and destroy the object
objCountFile.Close
Set objCountFile = Nothing

' Open Old file and get a text stream to new one
Set objOldDataFile = objOldFSO.OpenTextFile(strOldDataFileName, 2, True)

' Write new data
objOldDataFile.WriteLine name

objOldDataFile.Close
Set objOldDataFile = Nothing

' Destroy the FSO object
Set objFSO = Nothing
Set objOldFSO = Nothing

%>

</body>
</html>

SeaSmart.Net Protocol Specification Version1.4

32

Embedded Server vs External Server

There is a small difference between Web Pages designed for the Embedded Web Server and those that Run
on an External Web Server.

The Embedded Server uses a special form of CGI Script to capture the translated data from the NMEA
2000 backbone and renders it for further on processing by Browser Apps that may call for it. Since the
Embedded Server has no mass storage device, it keeps the incoming data temporally in memory until the
receive buffers are filled, after which it will dump the oldest data as newer data arrives. With a buffer size of
over 32 Kbytes, that is over 10 minutes of traffic on a heavily loaded bus.

Therefore, the Embedded Server CGI Script will service Browser Requests from Memory and not file
Storage.

The External Web Server on the other hand usually has plenty of mass storage so that data can be written to
files and files overwritten as new data arrives.

With this in mind, the Get Request for the Embedded Server is slightly different then the External Server.

Embedded Server GET Request file Name
var datafile = window.location.href.substring(0,
 window.location.href.lastIndexOf("/") + 1) +
 "GetNMEANData?";

Calls CGI script to grab data directly from
NMEA 2000 Bus

External Server GET Request file Name
var datafile = window.location.href.substring(0,
 window.location.href.lastIndexOf("/") + 1) +
 "GetNMEANData.htm?";

Gets contents of stored HTML file created by a
HTTP POST

Other then how the GET REQUEST is called and processed, all other elements of the .HTML document
remain the same for both environments with support for Dynamic HTML and JavaScript.

SeaSmart.Net Protocol Specification Version1.4

33

Discover IP Address

If your router doesn’t disclose the IP table, there are at least four ways you can discover the SeaSmart.net
IP; two PC-dependent, one Mac-dependent, and one platform independent.

Mac-dependent: download IPNetMonitorX and use it to ping all devices on your subnet. It won’t find
SeaSmart.net specifically, it’ll just find all active devices. Do it once with the SeaSmart.net unplugged, and
note all addresses active. Do it again with the SeaSmart.net plugged in, and note the new address in your
list. That’s the SeaSmart.net. (note: IPNetMonitorX is not free, but it is very handy software if you
administer a system and work on a Mac)

PC-dependent: download the Lantronix DeviceInstaller software from SeaSmart Web Site on your PC. It’s
free and it’s designed to sniff out and configure SeaSmart.net on a network. It’ll find your SeaSmart.net and
tell you its IP and let you configure it.

Independent: Use the IP query app below. It will send out broadcast UDP packets, querying every device
on the subnet. Any that are SeaSmart.net will reply, and you’ll have their IP addresses. To use it, you’ll need
Processing and the UDP library from Hypermedia.

IP Discovery Program Example

import processing.net.*;

/* SeaSmart.net UDP Device Query
 Sends out a UDP broadcast packet to query a subnet for SeaSmart.net
 serial-to-ethernet devices.
 SeaSmart.net devices are programmed to respond to UDP messages received on
 port 30718. If a SeaSmart.net device receives the string 0x00 0x00 0x00 0xF6,
 it respond with a UDP packet containing the status message on port 30718.
 This program uses the Hypermedia UDP library available at
http://hypermedia.loeil.org/processing/ */

// import UDP library
import hypermedia.net.*;
UDP udp; // define the UDP object
int queryPort = 30718; // the port number for the device query
String broadcastIpAddress = "128.122.151.255"; // fill in IP address here

void setup() {
 // create a new connection to listen for
 // UDP datagrams on query port
 udp = new UDP(this, queryPort);
// listen for incoming packets:
 udp.listen(true);
}

SeaSmart.Net Protocol Specification Version1.4

34

//process events
void draw() {
 // twiddle your thumbs. Everything is event generated.
}
/*
 send the query message when any key is pressed:
 */
void keyPressed() {
 byte[] queryMsg = new byte[4];
 queryMsg[0] = 0x00;
 queryMsg[1] = 0x00;
 queryMsg[2] = 0x00;
 queryMsg[3] = (byte)0xF6;

 // send the message
 udp.send(queryMsg, broadcastIpAddress, queryPort);
}

/* listen for responses */
void receive(byte[] data, String ip, int port) {

 String inString = new String(data); // data converted to a string
 int[] intData = int(data); // data converted to ints
 int i = 0; // counter
 // print the result:
 println("received "+inString+" from "+ip+" on port "+port);

 // parse the payload for the appropriate data:
 print("Opcode: ");
 println(intData[3]);

 // if the fourth byte is <F7>, we got a status reply:
 if (intData[3] == 0xF7) {
 // firmware data is bytes 4 to 20:
 print("Firmware data: ");
 for (i=4; i < 20; i++) {
 print(" " + Integer.toHexString(intData[i]));
 }
 // MAC address is bytes 24 to 30 (the end):
 print("\nMAC Addr: ");
 for (i=24; i < intData.length; i++) {
 print(" " + Integer.toHexString(intData[i]));
 }
 print("\n\n");
 }
}

SeaSmart.Net Protocol Specification Version1.4

35

SeaSmart Scan Utility

The SeaSmart Scan Utility can be used to discover devices on the local network and report the IP address.
The Windows compatible application uses the UDP Broadcast on selected local networks to listen for
SeaSmart devices that respond with network configuration information.

 The Visual Studio 2010 Source Code is available for download at www.seasmart.net.

To discover SeaSmart devices, first choose the network to scan. PC/Laptops often have multiple network
adapters (Ethernet, WiFi, Dial-up Modems) each with their own unique Broadcast Network ID. The
SeaSmart Scan Utility will initialize with list of all active networks.

Once a network adapter is selected, enter the broadcast address to start a scan. The Broadcast Address is
always the last address in the subnet. Most local Private networks use a Class C address which means the
first 3 groups (octets) of the Network IP need to match the adapter with 255 for the fourth group. For
example, if the network adapter is using 192.168.0.1 then the Broadcast would be 192.168.0.255.

WiFi adapters often use a Class B address in which the first two groups (octets) make up the Network ID
and the last two must be set to 255.255. For example, if the WiFi adapter is using 169.254.22.35, the
Broadcast Address would be 169.254.255.255.

SeaSmart.Net Protocol Specification Version1.4

36

Enter the appropriate Network Broadcast address in the Scan Network Field and select the Start Scan
Button

As the scan discovers SeaSmart devices, it will display Network Configuration information including IP
address and MAC address.

SeaSmart.Net Protocol Specification Version1.4

37

SeaSmart.Net Protocol Specification Version1.4

38

One Year Warranty

 “We”, “our”, or “us” refers to Chetco Digital Instruments, the manufacturer of this product. “You” or “your” refers to the
first person who purchases this product as a consumer item for personal, family, or household use.

We warrant this product against defects or malfunctions in materials and workmanship, and against failure to conform to this
product’s written specifications, all for one year (1) from the date of original purchase by you. WE MAKE NO OTHER
EXPRESS WARRANTYOR REPRESENTATION OF ANY KIND WHATSOEVER CONCERNING THIS PRODUCT.
Your remedies under this warranty will be available so long as you can show in a reasonable manner that any defect or
malfunction in materials or workmanship, or any nonconformity with the product’s written specifications, occurred within one
year from the date of your original purchase, which must be substantiated by a dated sales receipt or sales slip. Any such defect,
malfunction, or non-conformity which occurs within one year from your original purchase date will either be repaired without
charge or be replaced with a new product identical or reasonably equivalent to this product, at our option, within a reasonable
time after our receipt of the product. If such defect, malfunction, or non-conformity remains after a reasonable number of
attempts to repair by us, you may elect to obtain without charge a replacement of the product or a refund for the product. THIS
REPAIR, REPLACEMENT, OR REFUND (AS JUST DESCRIBED) IS THE EXCLUSIVE REMEDY AVAILABLE TO
YOU AGAINST US FOR ANY DEFECT, MALFUNCTION, OR NON-CONFORMITY CONCERNING THE PRODUCT
OR FOR ANY LOSS OR DAMAGE RESULTING FROM ANY OTHER CAUSE WHATSOEVER. WE WILL NOT
UNDER ANY CIRCUMSTANCES BE LIABLE TO ANYONE FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL,
OR OTHER INDIRECT DAMAGE OF ANY KIND.

Some states do not allow the exclusion or limitation of incidental or consequential damages, so the above limitations or
exclusions may not apply to you.

This warranty does NOT apply in the following circumstances: (1) when the product has been serviced or repaired by anyone
other than us, (2) when the product has been connected, installed, combined, altered, adjusted, or handled in a manner other than
according to the instructions furnished with the product, (3) when any serial number has been effaced, altered, or removed, or (4)
when any defect, problem, loss, or damage has resulted from any accident, misuse, negligence, or carelessness, or from any failure
to provide reasonable and necessary maintenance in accordance with the instructions of the owner’s manual for the product.

We reserve the right to make changes or improvements in our products from time to time without incurring the obligation to
install such improvements or changes on equipment or items previously manufactured.

This warranty gives you specific legal rights and you may also have other rights which may vary from state to state.

REMINDER: You must retain the sales slip or sales receipt proving the date of your original purchase in case warranty service is
ever required.

Chetco Digital Instruments, INC.
14377 Highway 101 South Unit C
Harbor, OREGON 97415
541-661-2051

SeaSmart.Net Protocol Specification Version1.4

39

VDASH SOFTWARE LICENSE AGREEMENT

THIS IS A LEGAL AGREEMENT BETWEEN THE END-USER WHOFIRST PURCHASES THIS
PRODUCT AS A CONSUMER ITEM FORPERSONAL, FAMILY, OR HOUSEHOLD USE (“YOU”)
AND CHETCO DIGITAL INSTRUMENTS, INC., THE MANUFACTURER OF THIS PRODUCT.
(“WE”, “OUR”, OR “US”). USING THE PRODUCT ACCOMPANIED BY THIS LICENSE
AGREEMENT CONSTITUTES ACCEPTANCE OF THESE TERMS AND CONDITIONS.

1. This License Agreement applies to the microcode and one or more lookup tables that your product may
contain. We refer to these singly as a “SOFTWARE”.

2. The SOFTWARE that your product may contain are licensed, not sold. We grant to you the
nonexclusive, non-assignable right to use these SOFTWARE for monitoring sensor/sender data, but only as
long as you comply with the terms and conditions of this License Agreement. We reserve the right to
terminate this license if you violate any aspect of this License Agreement.

3. The SOFTWARE housed in your product are protected by the copyright notices appearing on the
product or its screen(s). You may NOT modify, adapt, translate, reverse engineer, decompile, disassemble,
rent, lease, or resell any SOFTWARE, and you may NOT create derivative works based upon any
SOFTWARE or its contents.. Any unauthorized reproduction, use, or transfer of a SOFTWARE may be a
crime and may subject you to damages and attorney fees.

4. This License Agreement will terminate immediately without prior notice from us if you fail to comply
with or violate any of the provisions of this Agreement. Upon termination, you will promptly return all
products containing one or more SOFTWARE to us.

 5. Prices and programs are subject to change without notice.

6. This License Agreement shall be governed by the laws of the State of Oregon and comprises the
complete and exclusive understanding between you and us concerning the above subject matter.

SeaSmart.Net Protocol Specification Version1.4

40

How to Obtain Service

We back your investment in quality products with quick, expert service and genuine replacement parts. If
you’re in the United States and you have questions, please contact the Factory Customer Service
Department using our number listed below. You must send the unit to the factory for warranty service or
repair. Please call the factory before sending the unit. You will be asked for your unit’s serial number (shown
above). Use the following number:

541-469-4783

U.S.A.only. Monday through Friday, except holidays.

Your unit is covered by a full one-year warranty. (See inside for complete warranty details.) If your unit fails
and the failure is not covered by the original warranty, Chetco Digital Instruments has a flat-rate repair
policy that covers your unit and accessories packed with the unit at the factory. There is a 180-day warranty
on all non-warranty repairs from the factory, which is similar to the original warranty, but is for 180 days
rather than one year. For further details, please call us at the above number.

Remember, non-warranty repairs are subject to Chetco Digital Instruments published flat rate charges and
180-day warranty.

CHETCO DIGITAL INSTRUMENTS, INC

BOX 5359

Brookings, OR 97415

541-469-4783

http://www.chetcodigital.com

